Quantum Devices, Inc. Model QR12 provides an improved feedback solution in applications traditionally using modular encoders. With an overall height of less than one inch and the stability of a bearing encoder design, the model QR12 can provide significant performance upgrades in applications limited by modular encoder solutions. Outputs consist of two incremental quadrature channels with an index pulse and three-phase commutation. A flexible spring steel mount allows for much greater tail shaft run out and TIR than can be tolerated by modular encoder designs, while also providing 30 degrees of rotation for commutation timing.

QR12

Quantum Devices, Inc. 112 Orbison St., P.O. Box 100 Barneveld, WI 53507 (608) 924-3000 qdisales@quantumdev.com

Configuration Options:

<table>
<thead>
<tr>
<th>Resolution¹</th>
<th>Commutation¹</th>
<th>Output¹</th>
<th>Housing</th>
<th>Bore Size</th>
<th>Mounting</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>24², 256, 360, 500, 512, 1000, 1024, 1250, 2000, 2048, 2500, 4000, 4096, 5000, 8000, 8192, 10000, 16000, 16384, 20000</td>
<td>G = No Comm A = 4 Pole B = 6 Pole C = 8 Pole</td>
<td>A = Line Driver B = Line Driver ABZ / Open Collector UVW C = Sin/Cos¹ / Line Driver UVW D = Sin/Cos¹ / Open Collector UVW</td>
<td>B = Through Hole Cover</td>
<td>A = 3 mm B = 4 mm C = 5 mm D = 6 mm E = 8 mm F = 10 mm G = 7 mm J = 0.125² K = 0.1875² L = 0.250² M = 0.3125² N = 0.375²</td>
<td>A = 1.812" B = 1.575" C = 1.280"</td>
<td>A = 90° gated to A & B B = Ungated Square Wave (Sin/Cos Option Only) C = Ungated Sinusoidal (Sin/Cos Option Only)</td>
</tr>
</tbody>
</table>

Note:

1. Consult factory for configuration options not shown (e.g. resolution, commutation, output, etc.)
2. 24 PPR only available with No Comm (Commutation option 0)
3. Sin/Cos Outputs are limited to Resolutions between 500 and 1250 PPR

ISO 9001 CERT. NO. FM 52711
INCREMENTAL ELECTRICAL SPECIFICATIONS

Input Voltage 5 VDC ± 5%
Input Current Requirements 65 mA typical, 100 mA max plus interface loads
Input Ripple 2% peak to peak @ 5 VDC
Output Circuits
A = 26C31 line driver (RS-422 or single-ended TTL)
B = ABZ 26C31 line driver, UVW open collector (no U’ V’ W’)
Incremental Output Format Quadrature with A leading B for CW rotation
Index pulse true over A and B high
Max Operating Frequency 500 kHz
Symmetry 180° electrical ± 10% typical
Minimum Edge Separation <4000 PPR = 54° electrical
≥4000 PPR = 45° electrical
Commutation Format Three phase 4, 6 or 8 poles (other pole counts upon request)
Commutation Accuracy ± 1° mechanical
Z Channel to U Channel ± 1° mechanical

ENVIRONMENTAL SPECIFICATIONS

Storage Temperature -40 to 125°C
Operating Temperature -20 to 115°C
IP Rating IP40
Humidity 90% non-condensing
Vibration 20 g’s @ 50 to 500 CPS
Shock 50 g’s @ 11 mS duration

MECHANICAL SPECIFICATIONS

Bore Diameter (Tolerance) 0.125”, 0.1875”, 0.250”, 0.3125”, 0.375”, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 10 mm (+0.0006/-0.0000”)
Recommended Shaft Engagement 0.500” minimum
Allowable Shaft Runout 0.007” TIR
Axial Shaft Movement ± 0.030”
Maximum Shaft Speed 8000 RPM
Interface Connector Connector: JAE P/N FI-W15P-HFE
Mounting 1.280”, 1.575”, 1.812” bolt circle
Moment of Inertia 9.1 x 10^-5 oz·in·s²
Acceleration 1 x 10^5 radians/s²
Accuracy Instrument error 1.5 arc minutes max

15 PIN CONNECTOR
JAE P/N: FI-W15P-HFE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>A’</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>B’</td>
</tr>
<tr>
<td>5</td>
<td>Z</td>
</tr>
<tr>
<td>6</td>
<td>Z’</td>
</tr>
<tr>
<td>7</td>
<td>U</td>
</tr>
<tr>
<td>8</td>
<td>U’</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>10</td>
<td>V’</td>
</tr>
<tr>
<td>11</td>
<td>W</td>
</tr>
<tr>
<td>12</td>
<td>W’</td>
</tr>
<tr>
<td>13</td>
<td>Vcc</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>NC</td>
</tr>
</tbody>
</table>

Output Option A: ABZ = 26C31 line driver (RS-422)
UVW = 26C31 line driver (RS-422)
Output Option B: ABZ = 26C31 line driver (RS-422)
UVW = open collector

* 26C31 line driver is TTL compatible (can be wired single-ended)
* 26C31 sink/source 20 mA max (meets RS-422 at 5 V DDC supply)
* Open collector sink 30 mA max, pull up voltage 30 VDC max
* U, V and W are “no connect” for Commutation option 0

Note: Relationship of Z signals to U, V, W signals is not to scale. A & B signals have no relationship to U, V, W signals.
SIN/COS ELECTRICAL SPECIFICATIONS

Input Voltage
5 VDC ± 5%

Input Current Requirements
65 mA typical, 100 mA max plus interface loads

Input Ripple
2% peak to peak @ 5 VDC

Output Circuits
C = sine/cosine 1 Vpp (measured differentially), index**
UVW 26C31 line driver (RS-422 or single-ended TTL)

D = sine/cosine 1 Vpp (measured differentially), index**
UVW open collector (no U' V' W')

Incremental Output Format
Quadrature sine/cosine with sine leading cosine for CW rotation. Ungated index pulse.

Max Operating Frequency
500 kHz

Sine/Cosine Amplitude
1 Vpp ± 5% (measured differentially)

Index Amplitude**
C = 1 Vpp ± 5% (measured differentially) square wave
D = 1 Vpp ± 5% (measured differentially) sinusoidal

Commutation Format
Three phase 4, 6 or 8 poles (other pole counts upon request)

Commutation Accuracy
± 1° mechanical

Z Channel to U Channel
± 1° mechanical

SIN/COS OUTPUT WAVEFORMS

Clockwise Shaft Rotation as Viewed Looking at the Encoder Face (see figure below)

Note: Relationship of Z signals to U, V, W signals is not to scale. Sine & cosine signals have no relationship to U, V, W signals.

15 PIN CONNECTOR
JAE P/N: FI-W15P-HFE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sine</td>
</tr>
<tr>
<td>2</td>
<td>sine'</td>
</tr>
<tr>
<td>3</td>
<td>cosine</td>
</tr>
<tr>
<td>4</td>
<td>cosine'</td>
</tr>
<tr>
<td>5</td>
<td>Z</td>
</tr>
<tr>
<td>6</td>
<td>Z'</td>
</tr>
<tr>
<td>7</td>
<td>U</td>
</tr>
<tr>
<td>8</td>
<td>U'</td>
</tr>
<tr>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>10</td>
<td>V'</td>
</tr>
<tr>
<td>11</td>
<td>W</td>
</tr>
<tr>
<td>12</td>
<td>W'</td>
</tr>
<tr>
<td>13</td>
<td>Vcc</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>NC</td>
</tr>
</tbody>
</table>

*U', V' and W' are "no connect" for Output option D (open collector UVW)

ELECTRICAL OUTPUT CIRCUITS

Output Option C: sin/cos = 1 Vpp sine/cosine line driver
UVW = 26C31 line driver (RS-422)

Output Option D: sin/cos = 1 Vpp sine/cosine line driver
UVW = open collector

* 26C31 line driver is TTL compatible (can be wired single-ended)
* 26C31 sink/source 20 mA max (meets RS-422 at 5 VDC supply)
* Open collector sink 30 mA max, pull up voltage 30 VDC max
* U, V and W are "no connect" for Commutation option 0

*Quantum Devices, Inc. reserves the right to make changes in design, specifications and other information at any time without prior notice.

www.quantumdev.com
112 Orbison St., P.O. Box 100 Barneveld, WI 53507 (608) 924-3000 qdisales@quantumdev.com
MECHANICAL DIMENSIONS

1.280" BOLT CIRCLE WITH BOTTOM MOUNT HUB

1.575" BOLT CIRCLE WITH BOTTOM MOUNT HUB

1.812" BOLT CIRCLE WITH BOTTOM MOUNT HUB

*Quantum Devices, Inc. reserves the right to make changes in design, specifications and other information at any time without prior notice.
SIZE 15 RESOLVER MOUNTS

Utilize the optional resolver mount adapters to mate the QR12 - 1.280" flex mount option to Size 15 Pancake Resolver motor configurations. Eliminate the expensive mounting servo clamps by attaching either the two or three point adapters directly to the servo clamp holes. Assemble the QR12 to the adapter plate using (2) #4-40 screws. For jam nut attachment to threaded motor shafts, refer to JR12 Jam Nut Mount Optical Encoder Literature.

DIMENSIONS

Optional Aluminum Resolver Adapters

<table>
<thead>
<tr>
<th>2074D024 – Two Point 30 Degree Commutation Adjustment Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2074D025 – Two Point 360 Degree Commutation Adjustment Range</td>
</tr>
<tr>
<td>2074D026 – Three Point 30 Degree Commutation Adjustment Range</td>
</tr>
<tr>
<td>2074D027 – Three Point 360 Degree Commutation Adjustment Range</td>
</tr>
</tbody>
</table>

Quantum Devices, Inc. reserves the right to make changes in design, specifications and other information at any time without prior notice.
ENCODER INSTALLATION INSTRUCTIONS

1. Using two fingers slide the encoder onto shaft.

2. For additional security, Loctite can be applied to the encoder hub set screws. Remove the encoder’s set screws and using tip of toothpick apply appropriate amount of Loctite thread locking adhesive. A non-permanent adhesive is recommended.

3. Insert and tighten encoder set screws using a 0.050” hex wrench. Torque range of 50 to 80 oz-in.

4. Fixture the stainless steel flex mount to the mounting surface with #6-32 button head screws.

For brushless motors requiring commutation timing:

- Encoder drawings indicate position of encoder hub to encoder body at Z (index). Rotating the hub to this position allows for known U channel transition state (prior to step one above).

- Powering appropriate motor windings allow for locking motor shaft location to match the appropriate U transition (prior to step one above).

- While mechanically back driving the motor, monitor motor winding EMF position to the powered encoder position. Rotate the encoder stainless steel flex mount to achieve accurate timing of encoder commutation feedback channels to the appropriate motor winding EMF. Tighten the screws retaining the encoder stainless steel flex mounts.

Additional installation and handling instruction available at: www.quantumdev.com

*Quantum Devices, Inc. reserves the right to make changes in design, specifications and other information at any time without prior notice.